17 research outputs found

    Network analysis of protein dynamics

    Get PDF
    The network paradigm is increasingly used to describe the topology and dynamics of complex systems. Here we review the results of the topological analysis of protein structures as molecular networks describing their small-world character, and the role of hubs and central network elements in governing enzyme activity, allosteric regulation, protein motor function, signal transduction and protein stability. We summarize available data how central network elements are enriched in active centers and ligand binding sites directing the dynamics of the entire protein. We assess the feasibility of conformational and energy networks to simplify the vast complexity of rugged energy landscapes and to predict protein folding and dynamics. Finally, we suggest that modular analysis, novel centrality measures, hierarchical representation of networks and the analysis of network dynamics will soon lead to an expansion of this field.Comment: 10 pages, 2 figures, 1 tabl

    ModuLand plug-in for Cytoscape: determination of hierarchical layers of overlapping network modules and community centrality

    Get PDF
    Summary: The ModuLand plug-in provides Cytoscape users an algorithm for determining extensively overlapping network modules. Moreover, it identifies several hierarchical layers of modules, where meta-nodes of the higher hierarchical layer represent modules of the lower layer. The tool assigns module cores, which predict the function of the whole module, and determines key nodes bridging two or multiple modules. The plug-in has a detailed JAVA-based graphical interface with various colouring options. The ModuLand tool can run on Windows, Linux, or Mac OS. We demonstrate its use on protein structure and metabolic networks. Availability: The plug-in and its user guide can be downloaded freely from: http://www.linkgroup.hu/modules.php. Contact: [email protected] Supplementary information: Supplementary information is available at Bioinformatics online.Comment: 39 pages, 1 figure and a Supplement with 9 figures and 10 table

    Signalogs: Orthology-Based Identification of Novel Signaling Pathway Components in Three Metazoans

    Get PDF
    BACKGROUND: Uncovering novel components of signal transduction pathways and their interactions within species is a central task in current biological research. Orthology alignment and functional genomics approaches allow the effective identification of signaling proteins by cross-species data integration. Recently, functional annotation of orthologs was transferred across organisms to predict novel roles for proteins. Despite the wide use of these methods, annotation of complete signaling pathways has not yet been transferred systematically between species. PRINCIPAL FINDINGS: Here we introduce the concept of 'signalog' to describe potential novel signaling function of a protein on the basis of the known signaling role(s) of its ortholog(s). To identify signalogs on genomic scale, we systematically transferred signaling pathway annotations among three animal species, the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and humans. Using orthology data from InParanoid and signaling pathway information from the SignaLink database, we predict 88 worm, 92 fly, and 73 human novel signaling components. Furthermore, we developed an on-line tool and an interactive orthology network viewer to allow users to predict and visualize components of orthologous pathways. We verified the novelty of the predicted signalogs by literature search and comparison to known pathway annotations. In C. elegans, 6 out of the predicted novel Notch pathway members were validated experimentally. Our approach predicts signaling roles for 19 human orthodisease proteins and 5 known drug targets, and suggests 14 novel drug target candidates. CONCLUSIONS: Orthology-based pathway membership prediction between species enables the identification of novel signaling pathway components that we referred to as signalogs. Signalogs can be used to build a comprehensive signaling network in a given species. Such networks may increase the biomedical utilization of C. elegans and D. melanogaster. In humans, signalogs may identify novel drug targets and new signaling mechanisms for approved drugs

    Induced fit, conformational selection and independent dynamic segments: an extended view of binding events

    Full text link
    Single molecule and NMR measurements of protein dynamics increasingly uncover the complexity of binding scenarios. Here we describe an extended conformational selection model which embraces a repertoire of selection and adjustment processes. Induced fit can be viewed as a subset of this repertoire, whose contribution is affected by the bond-types stabilizing the interaction and the differences between the interacting partners. We argue that protein segments whose dynamics are distinct from the rest of the protein ('discrete breathers') can govern conformational transitions and allosteric propagation that accompany binding processes, and as such may be more sensitive to mutational events. Additionally, we highlight the dynamic complexity of binding scenarios as they relate to events such as aggregation and signalling, and the crowded cellular environment.Comment: 9 pages, 2 Figures, 1 Table, 2 boxes, Trends in Biochemical Sciences 2010 October issue cover stor

    Community landscapes: an integrative approach to determine overlapping network module hierarchy, identify key nodes and predict network dynamics

    Get PDF
    Background: Network communities help the functional organization and evolution of complex networks. However, the development of a method, which is both fast and accurate, provides modular overlaps and partitions of a heterogeneous network, has proven to be rather difficult. Methodology/Principal Findings: Here we introduce the novel concept of ModuLand, an integrative method family determining overlapping network modules as hills of an influence function-based, centrality-type community landscape, and including several widely used modularization methods as special cases. As various adaptations of the method family, we developed several algorithms, which provide an efficient analysis of weighted and directed networks, and (1) determine pervasively overlapping modules with high resolution; (2) uncover a detailed hierarchical network structure allowing an efficient, zoom-in analysis of large networks; (3) allow the determination of key network nodes and (4) help to predict network dynamics. Conclusions/Significance: The concept opens a wide range of possibilities to develop new approaches and applications including network routing, classification, comparison and prediction.Comment: 25 pages with 6 figures and a Glossary + Supporting Information containing pseudo-codes of all algorithms used, 14 Figures, 5 Tables (with 18 module definitions, 129 different modularization methods, 13 module comparision methods) and 396 references. All algorithms can be downloaded from this web-site: http://www.linkgroup.hu/modules.ph
    corecore